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Smartphones have changed the world.

In 2010, we still relied on

a bag full of gadgets—camera,
cccccc der, GPS and even alarm clocks
and flashlights. Today, we only need one.

THE SWARTPHONE — THE WAL
CHANGED. THEN IT
CHANGED LS. JOURNAL

JOANNA STERN



The Trillion-Dollar Smartphone Economy
Estimated sales of smartphones and related hardware, content and services in 2020

///

$77b

$17§b Accessories
Mobile
advertising

$484b

Smartphones

Deloitte estimates the combined
smartphone and smartphone multiplier
market to be worth $944 billion in 2020"

$8b=Video streaming subscriptions
$3b=Storage; $4b=0thers

* Deloitte defines the "smartphone multiplier" as tot

@ ® @ products and services depending on smartphone ownership.

. /A
@statistaCharts Source: Deloitte analysis of data from App Annie, IFPI, Zenith and others StatISta o’ |
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Smartphones Cause Photography Boom

Number of digital photos taken worldwide* Devices used in 2017
1,200b
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1,000b g i
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Digital cameras
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@statistaCharts Source: InfoTrends via Bitkom StatISta 5



More than 2 billion photos shared on
social media per day

Over 100 million are “selfies”

Reuters/CBS/TIME/KPCB



What Smartphones Have Done to the Camera Industry

Digital Camera Sales Dropped 84% Since 2010

Worldwide digital camera shipments by CIPA members
B Cameras with built-in lens B Cameras with interchangeable lens
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Camera & Imaging Products Association (CIPA) is an international industry association.
@ @ @ Members include Olympus, Casio, Canon, Kodak, Sony and Nikon among others.

@statistaCharts Source: CIPA Stat|5ta 5



1800s 1930s 1990s 2010s 2020s

Old School Analog Digital Mobile/Computational



: 1935-1985
Introduced in 1935, and dominant for about 50 years.

Largely discontinued around 2005.

Analog Film




DIGITAL PHOTOGRAPHY
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First Digital Camera 1975

“[Kodak executives] were
convinced that no one

E-cam (Electronic Still Camera) would ever want to look at
100x100 resolution (0.01Mpix) their pictures on a screen.”
Took 20 seconds to shoot a picture — Steven Sasson

Patented in 1978


https://lens.blogs.nytimes.com/2015/08/12/kodaks-first-digital-moment/

35 years later, Sasson got his due...

“[Kodak executives] were
convinced that no one
would ever want to look at
their pictures on a screen.”
— Steven Sasson

National Medal of Technology in 2009


https://lens.blogs.nytimes.com/2015/08/12/kodaks-first-digital-moment/
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Polaroid SX-70
1972



Instant Gratification

 Simply press one button.
 Nothing to focus or set.

, ® Motor ejects the picture. -
© Sharp, clear SX-70 color. ']

POLAROID LAND CAMERA

$
i
}

o Light,compact, but sturdy.
®Won't waste film if flash

is used up, or vice versa.
o Battery is in the film pack.
o Simple? It's the simplest.
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First Commercial Digital Camera 1990

e

Logitech Fotoman, Nikon bodies, Kodak sensors,
1990 1992

376x284 resolution; First DSLR

Black/white w/ 256 gray levels; 1.5 Mpix resolution;

1Mb internal RAM; Tethered External Hard Disk

Cost: $1000 Cost: up to $20,000

Sold < 1000 units
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Invention of CMOS/Camera on a Chip

+ Cheaper, power efficient
- Noisier, rolling shutter readout

It would take another 10 years before CMOS systems would
enable mass production of affordable (mobile) cameras

"Active Pixel Sensors: Are CCD's Dinosaurs?" Eric R. Fossum (1993),
Proc. SPIE Vol. 1900, p. 2-14, in Charge-Coupled Devices and Solid
State Optical Sensors Ill, Morley M. Blouke; Ed.



First Digital First
Camera Commercial
Prototype Digital Cameras
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Digital SLRs,
Compacts
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Digital SLRs and Compacts (CCD)
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Canon Powershot, Nikon D1,
2000 2000
1.5 Mpix resolution; 2-3 Mpix resolution;

Cost: S500 Cost: S3-5K



Fast Forward to Today (CMOS)

Sony RX100,
2019

20 Mpix resolution;
Cost: $500

Nikon D810,
2019

36 Mpix resolution;
Cost: $3- 5K



MOBILE PHOTOGRAPHY
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Digital SLRs,
Compacts




J-Phone (Sharp), sold in Japan ‘00

¢

0.1 Mpix, CCD
256 color disp.
$500

First phone with front camera a year later in 2003
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iPhone



“Apple reinvents the phone”
(but not the camera)

Display and Ul were king.

“On the back, the biggest thing of note is
we’ve got a two megapixel camera built
rightin.”

- Steve Jobs

Competition: Compact Cameras



300 dpi displays

First Digital First

Camera Commercial 1°t Commercial
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Mbps (log scale)

Wireless Network Speed

0.01 seconds
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COMPUTATIONAL PHOTOGRAPHY

“The best camera is the one that’s with you.”
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“The best camera is the one that’s with you.”



A Recent History at Google

2012 2014 2016 201 2019




Can one be as good as the other?




Can one be as good as the other?

|4._7¢nm2 ~ 300x = 1360 nm?




Less light gets recorded

[ ] 35 mm

5.76 mm




Compete with hardware!

1 camera 2 cameras 3 camera 4 cameras 5 cameras

Yet most of the improvements are due to software.



Want: More light, dynamic range, resolution

Capture a burst v/



Modern Mobile Imaging:
Burst Photography

Exposure control

W Enhance

Align: Reliable Optical Flow — Scene is never stationary

Merge: Artifact-free Fusion — Alignment failures, occlusion, ...

Enhance: Denoise, Sharpen, Contrast enhancement, Dynamic Range



Classic Camera Image Processing Pipeline

“Enhance”

Gain Control
ﬁfz’ ‘ ‘ A/D Converter ‘
- Possible LUT

Sensor with color filter array
(CCb/CMOS)
T Color Space Noise
one Transform + Reduction/
Reproduction Color Preferences Sharpening

{

JPEG
Compression

White
Balance

I

“Merge”

Demosaic

Michael Brown



Demosaicing : 12MP sensor # 12 million RGB pixels

§>779
2 2 92

Mlssmg information
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Two-thirds of your picture is made-up!




Demosaicing




Demosaicing .... Kills Details and Produces Artifacts

46



Instead ..... Replace demosaicing with multiple frames




How:
“Pixel-shifting”

Shift sensor right 1 pixel

Shift sensor down 1 pixel

Shift sensor down and right 1 pixel




Some Mirrorless Cameras do “Pixel Shift Mode”

Pixel Shift Multi Shooting



Life is not so simple.










Multi-dimensional, non-uniform, interpolation




Source of motion in mobile imaging?

54



Handheld burst capture

55



After alignment: what’s still moving?

56



(Natural) Physiological Tremor

J. Neurol. Neurosurg. Psychiat., 1956, 19, 260.

PHYSIOLOGICAL TREMOR

BY

JOHN MARSHALL AND E. GEOFFREY WALSH
From the Neurological Unit, Northern General Hospital, and Department of Physiology, University of Edinburgh

Rhythmicity during muscular contration has long
been studied. The earliest observations dealt with
the sounds that can be heard on listening to a
contracting muscle and were naturally limited by
the poor sensitivity of the ear at low frequencies.
When, in the second half of the nineteenth century,
graphic recording techniques became readily avail-
able a number of papers were published dealing

with the periodicity that can be recorded in myo-
grams. Of outstanding interest were the findings
of Schifer (1886) who observed that

the rate of excitation employed, provided it was not
allowed to fall below a certain limit, the frequency of
muscular response to stimulation of the cortex, as
indicated by the undulations described by the myo-
graph lever, does not vary with the rate of excitation,
but maintains a nearly uniform rate of about 10 per
second.”

They concluded that the rhythmicity was deter-
mined at a spinal rather than at a cortical level.

With the discovery of the alpha waves of the
electro-encephalogram the view has sometimes been

a)

Vertical Angular Displacement (radians)

tonal Angular Displacement (radians)

Measured in 100s of bursts
051
0k
0.5+
) 4 05 0 05 1 s
Horiz .
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What if phone/camera is immobilized?

Simulated “tremor”
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Phase D
Aliasing + Phase diversity — Multi-frame Super-Res

Motion

Aliasing + Subpixel Motion



Vol 44714 June 2007 /doi:10.1038 /nature05866

The visual system appears to do super-resolution
via micro-saccades

nature

LETTERS

Miniature eye movements enhance fine spatial detail

Michele Rucci', Ramon lovin', Martina Poletti' & Fabrizio Santini'

Our eyes are constantly in motion. Even during visual fixation,
small eye movements continually jitter the location of gaze' . It is
known that visual percepts tend to fade when retinal image motion
is eliminated in the laboratory®®. However, it has long been
debated whether, during natural viewing, fixational eye move-
ments have functions in addition to preventing the visual scene
from fading'". In this study, we analysed the influence in
humans of fixational eye movements on the discrimination of
gratings masked by noise that has a power spectrum similar to
that of natural images. Using a new method of retinal image sta-
bilization'®, we selectively eliminated the motion of the retinal
image that normally occurs during the intersaccadic intervals of
visual fixation. Here we show that fixational eye movements
improve discrimination of high spatial frequency stimuli, but
not of low spatial frequency stimuli. This improvement originates
from the temporal modulations introduced by fixational eye
movements in the visual input to the retina, which emphasize
the high spatial frequency harmonics of the stimulus. In a natural
visual world dominated by low spatial frequencies, fixational eye
movements appear to constitute an effective sampling strategy by
which the visual system enhances the processing of spatial detail.

stabilization during periods of visual fixation between saccades, as
would have been necessary to study fixational eye movements in their
natural context™ . Instead, all trials with stabilized vision had to be
runin uninterrupted blocks while the subject maintained fixation—a
highly unnatural condition that unavoidably led to visual fatigue and
fading.

In this study, we examined the influence of fixational eye move-
ments on the discrimination of targets at different spatial frequencies
(grating spacings). We compared discrimination performances mea-
sured in two conditions: with and without the retinal image motion
produced by fixational eye movements. To overcome the limitations
of previous experiments, we developed a new retinal stabilization
technique based on real-time processing of eye-movement signals'®,
Like previous stabilization methods, this technique does not guaran-
tee perfect elimination of retinal image motion; however, unlike pre-
vious methods, it combines a high quality of stabilization with
experimental flexibility (see Supplementary Information). This flex-
ibility enabled us todisplay and selectively stabilize the stimulusafter a
saccade, a method that isolates the normal fixational motion of the
eye. Italso allowed usto randomly alternate between trials with retinal
stabilization and trials with normal retinal motion, a procedure that



Non-uniform coverage

Dense coverage

/ Sparse coverage




Merge: Nonlinear Kernel Regression

Continuous interpolation

Kernel functions
Measurements




We can also merge onto higher-res grid

* This has its limits

» depends on pixel/lens spot size tradeoff
* for typical mobile sensors, limit is 2x
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Robustness model

Robustness R
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Gather — Parallel Process

Alian N Estimate
g contribution
> Sample
Alian N Estimate
g contribution \

Sample — Accumulation




Hasinoff et al. [2016]

Full picture (reference)






Studio scene rl DIGITAL PHOTOGRAPHY REVIEW T Q O@EO
Image comparison tool f D P R EVI Ew Lighting: "%\ Image size: 77 G Fam

Google Pixel 3

q
" I [ '

Sony Cyber-shot DSC-RX100 IV

P ——

[£ Download: JPEG (3.8MB) (il [¥ Download: JPEG (6.0MB) EY

Olympus OM-D E-M10 III s Apple iPhone X

JPEG ¥ § 125 %

"The Pixel 3 is the first smartphone camera to
rival cameras with Micro 4/3 sensors.”

©®

——

(i [¥ Download: JPEG (3.2MB) EY




APS-C
21 mm

35mm




M4/3
17 mm

6 mm
+

Super-Resolution

APS-C
21 mm

35mm




Hasinoff et al. [2016]

[SIGGRAPH 2019]
Handheld Multi-Frame Super-Resolution

BARTLOMIE) WRONSKI, IGNACIO GARCIA-DORADO, MANFRED ERNST, DAMIEN KELLY, MICHAEL
KRAININ, CHIA-KAI LIANG, MARC LEVOY, and PEYMAN MILANFAR, Google Inc.



Use Cases: Night Sight, Super-res Zoom






Zoom Use Case

=

{J# Enhance |

Zall |

Align

The latest news from Google Al

22 Google Al Blog

Enhance! RAISR Sharp Images with Machine Learning
Monday, November 14, 2016

Posted by Peyman Milanfar, Research Scientist

[Romano, Milanfar, Isidoro, Transactions on Computational Imaging, 2017]



Filter Learning

filter




We can do even better

e Bucket similar patches together and train within buckets

Learning per bucket




Coherence

Strength
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No zoom
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(2x zoom)



(2x zoom crop)

Standard Digital Zoom




(2x zoom crop)

Single-frame Super-res
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(2x zoom crop)
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OTHER CHALLENGES IN
COMPUTATIONAL IMAGING



Curation

=3t Google Al Blog

e latest news from Google Al

troducing NIMA: Neural Image Assessment
»nday, December 18, 2017

D1 L v INO N HDNVI

sted by Hossein Talebi, Software Engineer and Peyman Milanfar Research Scientist, Machine
‘ception

e B

\/ antification of image quality and aesthetics has been a long-standing problem in image
. cessing and computer vision. While technical quality assessment deals with measuring pixel-

el degradations such as noise, blur, compression artifacts, etc., aesthetic assessment captures
12 mantic level characteristics associated with emotions and beauty in images. Recently, deep
Exnos“res 1volutional neural networks (CNNs) trained with human-labelled data have been used to address
+ subjective nature of image quality for specific classes of images, such as landscapes. However,

6 are Awesome 1se approaches can be limited in their scope, as they typically categorize images to two classes
_. low and high quality. Our proposed method predicts the distribution of ratings. This leads to a
more accurate quality prediction with higher correlation to the ground truth ratings, and is
applicable to general images.

H. Talebi and P. Milanfar, "NIMA: Neural Image Assessment", IEEE Transactions on Image Processing 2018.


https://arxiv.org/abs/1709.05424

NIMA: Neural Image Assessment

Image classifier CNN
Spatial pyramid pooling

““““ > Fully connected

Q
ImageXI. |::> CNN |::> |::> § :>

SPP

Softmax

score probabilities

EMD (Earth Mover’s
Distance)
Loss

H. Talebi and P. Milanfar, "NIMA: Neural Image Assessment", In IEEE Transactions on Image Processing 2018.
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https://arxiv.org/abs/1709.05424

NIMA for Aesthetic Quality

89



NIMA For Technic
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peyvman.milanfar@gmail.com

http://www.milanfar.org
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