DIV2K dataset: DIVerse 2K resolution high quality images as used for the challenges @ NTIRE (CVPR 2017 and CVPR 2018) and @ PIRM (ECCV 2018)

Radu Timofte, Eirikur Agustsson, Shuhang Gu, Jiqing Wu, Andrey Ignatov, Luc Van Gool


 

Citation

If you are using the DIV2K dataset please add a reference to the introductory dataset paper and to one of the following challenge reports.

@InProceedings{Agustsson_2017_CVPR_Workshops,
	author = {Agustsson, Eirikur and Timofte, Radu},
	title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study},
	booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
	month = {July},
	year = {2017}
} 

@InProceedings{Timofte_2017_CVPR_Workshops,
author = {Timofte, Radu and Agustsson, Eirikur and Van Gool, Luc and Yang, Ming-Hsuan and Zhang, Lei and Lim, Bee and others},
title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {July},
year = {2017}
}

@InProceedings{Timofte_2018_CVPR_Workshops,
author = {Timofte, Radu and Gu, Shuhang and Wu, Jiqing and Van Gool, Luc and Zhang, Lei and
Yang, Ming-Hsuan and Haris, Muhammad and others},
title = {NTIRE 2018 Challenge on Single Image Super-Resolution: Methods and Results},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2018}
}

@InProceedings{Timofte_2018_CVPR_Workshops,
author = {Timofte, Radu and Gu, Shuhang and Wu, Jiqing and Van Gool, Luc and Zhang, Lei and
Yang, Ming-Hsuan and Haris, Muhammad and others},
title = {NTIRE 2018 Challenge on Single Image Super-Resolution: Methods and Results},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2018}
}

@InProceedings{Ignatov_2018_ECCV_Workshops,
author = {Ignatov, Andrey and Timofte, Radu and others},
title = {PIRM challenge on perceptual image enhancement on smartphones: report},
booktitle = {European Conference on Computer Vision (ECCV) Workshops},
month = {January},
year = {2019}
}

Supplementary material (PSNR, SSIM, IFC, CORNIA results for top NTIRE 2017 challenge methods (SNU_CVLab, HelloSR, Lab402), VDSR and A+ on DIV2K, Urban100, B100, Set14, Set5)

License

Please notice that this dataset is made available for academic research purpose only. All the images are collected from the Internet, and the copyright belongs to the original owners. If any of the images belongs to you and you would like it removed, please kindly inform us, we will remove it from our dataset immediately.

 

Data overview

We are making available a large newly collected dataset -DIV2K- of RGB images with a large diversity of contents.

The DIV2K dataset is divided into:

Data structure

DIV2K dataset has the following structure:

1000 2K resolution images divided into: 800 images for training, 100 images for validation, 100 images for testing

For each challenge Track (with 1. bicubic or 2. unknown downgrading operators) we have:

DIV2K forder structure is as follows:


DIV2K/ -- DIV2K dataset

DIV2K/DIV2K_train_HR/ -- 0001.png, 0002.png, ..., 0800.png train HR images (provided to the participants)
DIV2K/DIV2K_train_LR_bicubic/ -- corresponding low resolution images obtained using Matlab imresize function with default settings (bicubic interpolation)
DIV2K/DIV2K_train_LR_bicubic/X2/ -- 0001x2.png, 0002x2.png, ..., 0800x2.png train LR images, downscale factor x2
DIV2K/DIV2K_train_LR_bicubic/X3/ -- 0001x3.png, 0002x3.png, ..., 0800x3.png train LR images, downscale factor x3
DIV2K/DIV2K_train_LR_bicubic/X4/ -- 0001x4.png, 0002x4.png, ..., 0800x4.png train LR images, downscale factor x4
DIV2K/DIV2K_train_LR_unknown/ -- corresponding low resolution images obtained using degradation operators kept hidden, unknown to the participants
DIV2K/DIV2K_train_LR_unknown/X2/ -- 0001x2.png, 0002x2.png, ..., 0800x2.png train LR images, downscale factor x2
DIV2K/DIV2K_train_LR_unknown/X3/ -- 0001x3.png, 0002x3.png, ..., 0800x3.png train LR images, downscale factor x3
DIV2K/DIV2K_train_LR_unknown/X4/ -- 0001x4.png, 0002x4.png, ..., 0800x4.png train LR images, downscale factor x4

DIV2K/DIV2K_valid_HR/ -- 0801.png, 0802.png, ..., 0900.png validation HR images (will be available to the participants at the beginning of the final evaluation phase)
DIV2K/DIV2K_valid_LR_bicubic/ -- corresponding low resolution images obtained using Matlab imresize function with default settings (bicubic interpolation)
DIV2K/DIV2K_valid_LR_bicubic/X2/ -- 0801x2.png, 0802x2.png, ..., 0900x2.png train LR images, downscale factor x2
DIV2K/DIV2K_valid_LR_bicubic/X3/ -- 0801x3.png, 0802x3.png, ..., 0900x3.png train LR images, downscale factor x3
DIV2K/DIV2K_valid_LR_bicubic/X4/ -- 0801x4.png, 0802x4.png, ..., 0900x4.png train LR images, downscale factor x4
DIV2K/DIV2K_valid_LR_unknown/ -- corresponding low resolution images obtained using degradation operators kept hidden, unknown to the participants
DIV2K/DIV2K_valid_LR_unknown/X2/ -- 0801x2.png, 0802x2.png, ..., 0900x2.png train LR images, downscale factor x2
DIV2K/DIV2K_valid_LR_unknown/X3/ -- 0801x3.png, 0802x3.png, ..., 0900x3.png train LR images, downscale factor x3
DIV2K/DIV2K_valid_LR_unknown/X4/ -- 0801x4.png, 0802x4.png, ..., 0900x4.png train LR images, downscale factor x4

DIV2K/DIV2K_test_HR/ -- 0901.png, 0902.png, ..., 1000.png test HR images (not provided to the participants, used for final evaluation and ranking)
DIV2K/DIV2K_test_LR_bicubic/ -- corresponding low resolution images obtained using Matlab imresize function with default settings (bicubic interpolation)
DIV2K/DIV2K_test_LR_bicubic/X2/ -- 0901x2.png, 0902x2.png, ..., 1000x2.png train LR images, downscale factor x2
DIV2K/DIV2K_test_LR_bicubic/X3/ -- 0901x3.png, 0902x3.png, ..., 1000x3.png train LR images, downscale factor x3
DIV2K/DIV2K_test_LR_bicubic/X4/ -- 0901x4.png, 0902x4.png, ..., 1000x4.png train LR images, downscale factor x4
DIV2K/DIV2K_test_LR_unknown/ -- corresponding low resolution images obtained using degradation operators kept hidden, unknown to the participants
DIV2K/DIV2K_test_LR_unknown/X2/ -- 0901x2.png, 0902x2.png, ..., 1000x2.png train LR images, downscale factor x2
DIV2K/DIV2K_test_LR_unknown/X3/ -- 0901x3.png, 0902x3.png, ..., 1000x3.png train LR images, downscale factor x3
DIV2K/DIV2K_test_LR_unknown/X4/ -- 0901x4.png, 0902x4.png, ..., 1000x4.png train LR images, downscale factor x4

 

Data access

 

 

Scoring scripts

 

Matlab scoring functions used by NTIRE 2017 challenge for the evaluation of the solutions
Scoring functions used by NTIRE 2018 realistic tracks for the evaluation of the solutions