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Abstract

The goal of my thesis is to select a set of thumbnails from a video based on a given text query. The selected
thumbnails are not only relevant to the user query but also diverse enough visually to represent the video
content. In short, the thesis addresses the problem of query relevant video summarization in the form of
keyframes. We use a deep Visual Semantic Embedding Model and submodular mixtures to address the
problem. In this work, we leverage the additional textual side information of images along with their visual
information to jointly train a deep Visual Semantic Embedding network. This network maps the text queries
and video frames to the same Latent Semantic Embedding Space where they are comparable. Later, we pose
the video summarization task as a subset selection problem. We learn a linear combination of submodular
functions to create a video summary in the form of a set of thumbnails that are both query relevant and
diverse. For evaluation of our model, seeing the non-availability of a video summarization dataset catering
to summaries that are both text relevant and diverse, we introduce a new dataset that consists of 100 query-
video pairs with the frames annotated for the query relevance and are grouped to clusters based on their
visual similarity. We evaluate our model on three different datasets and compared with previous state of the
art methods. Our method improve w.r.t mAP over baseline by 2.6% on MSR evaluation dataset, 2.71% on
MediaEval dataset and 3.9% on our newly annotated dataset: Relevance and Diversity (RAD) Dataset. We
also present some qualitative results for the selection of diversified query relevant frames from videos.
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Chapter 1

Introduction

It has become a glaring fact that the number of online videos that gets uploaded is growing each day and
they generate billions of views and millions of hours of watchtime. As a matter of fact, YouTube has over
a billion users and every day people watch hundreds of millions of hours on YouTube and the number of
people watching YouTube per day is up 40% year by year since March 2014 1. The rising video platforms
face many challenges. It is practically being difficult to search out the right video from a whole lot of videos.
This may be due to the increasing numbers or due to an ambiguous video thumbnail. Though we do not
have control in rising video uploads, we shall try to express a video with an informative thumbnail for a
better video search as in Figure 1.1(a). Furthermore, among these huge collections, suppose we shortlist a
collection of relevant videos, we still tend to watch the whole set of videos in search of a particular content.
This video level searching becomes more difficult if the videos are lengthy. However, it would make a good
sense to present a condensed preview of a video depending on a query as in Figure 1.1(b).

(a) For a better video search (b) Query adaptive GIFs

Figure 1.1: Selected applications of extracting query specific thumbnails from a video.

With the increasing number of video contents and the delay in watching the elaborate video content
introduce the need for video thumbnail extraction from the videos. A good video thumbnail represents a
condensed preview of the complete video content. There are various options of condensed preview such as
GIFs[9], montages, thumbnails [14, 25], etc. The recent trends even in popular social networking sites like
Facebook, Google+ and others are to display the videos as GIFs. One of the closely explored problem is
video summarization [40, 18, 8, 39, 33]. It becomes more challenging if the video summarization is based

1https://www.youtube.com/yt/press/statistics.html
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CHAPTER 1. INTRODUCTION

on a given text query. However, the selection of query dependent video thumbnails have many applications
in the real world like video highlights detection, video search where query dependent results are generated,
GIF generation from video [9], among others. In this project, we focus on the video thumbnails selection
from the videos, which not only make a good video representation but also are relevant to the user query.

There are many conventional works of extracting frames based on the visual content. [14] uses web-
images as a prior to facilitate the summarization of videos. They learn a classifier for different viewpoints
of each class (eg: automobiles) and assign each video frame to a learned subclass (belongs to a viewpoint).
Then for the output summary, they select k frames that are closest to the centroid of top k ranked subclass.
Recently, the works have appeared where abundant semantic information associated with the videos such as
the title of the video [39], their description, user query for the video search [25] and others, are considered
to extract relevant frames. The use of the side information allowed frames of the video relevant to the query
to be selected [24]. In [24], associated keywords of videos are queried to retrieve photos from Flickr. Later,
the video frames’ interestingness are measured by computing the feature distribution similarity between
the frame and retrieved photo set. [39] uses titles of the video to retrieve images and further select shots
both relevant and representative from learned canonical visual concepts focusing on shared region between
images and given video.

Figure 1.2: Visual Semantic Embedding Space.

In this problem of video thumbnail selection with additional semantic information, visual content and
text information associated with the videos are mapped to the same latent semantic embedding space, where
their projections show their clear relevance as given in Figure 1.2. We follow the work of [25] with some
improvements. We use supervised learning techniques to train our model for the representation learning
of text information and visual input. The representations of the textual input and the visual inputs are
mapped to Visual Semantic Embedding vector space where semantic proximity between texts and images
can be easily computed by the cosine similarity of their representations. For the supervised learning, we
use a click through image dataset due to the absence of a publicly available click through video dataset.
The click-through image dataset is a dataset comprising of text queries, clicked images and the number of
clicks associated with them. Thus, text and images are embedded into the same space by joint training
of queries and images of a click-through image dataset using the Visual Semantic Embedding Model. In
this embedding space, query relevant frame embeddings would be ideally close to the query embedding
compared to the proximity of the non-relevant frame embeddings. In Figure 1.2, we can see the mapping

4



CHAPTER 1. INTRODUCTION

of text information and video frames to the same embedding space where they are comparable. We output
query specific thumbnails with properties: a) Query Relevance b) Diversity in selected thumbnails i.e. the
output thumbnails are visually different. The Visual Semantic Embedding Model can leverage the semantic
similarity of the queries and images which in turn helps with unseen textual and visual data. We leverage
deep convolutional neural network (CNN) architecture of VGG19 [37, 17] for the input image, word2vec
[29] and Long Short Term Memory (LSTM) network for the input text query. Word2vec is a neural language
model which are well suited for extracting semantically meaningful dense vector representation of words.

Our textual content is a user query which is generally a combination of useful and non-informative
words. In order to embed a query into the same space as the images, we input the word2vec vectors of
query’s words sequentially to LSTM network as in Figure 1.3 to learn a fixed length query representation.
LSTM network can yield out a better vector representation for the query as it learns the importance of each
word in the query. So, in our deep visual semantic model, there are two parallel networks, one for the textual
query and the other for the image mapping as shown in Figure 1.3. The LSTM output from query part of
the network and the projected fully connected layer from the input image part of the network are trained to
map to the same latent semantic space. This trained embedding allows to leverage the relevance between
the text queries and their semantically closer images. The relevance score between any unseen query-image
pair can be computed from their projections in the latent semantic embedding space.

Figure 1.3: Our Model.

The query relevance score of all the sampled keyframes is exploited to rank the frames of the video.
The ranked keyframes may not be diverse. Following [8], we use sub-modular mixtures to make a subset
selection from all the keyframes of the video which are not relevant to the query but are also diverse in visual
content. Finally, for a given query and a video, we get the output video summary as a diversified set of query
relevant thumbnails. For the evaluation of our model, there is no publicly available video summarization
dataset to our knowledge that concerns with query adaptive video summaries. Hence, we annotate a new
dataset naming it Relevance And Diversity dataset (RAD) which we explain in detail in the Chapter 8. The
main contributions of my thesis work are:

5



CHAPTER 1. INTRODUCTION

• Improvements on Deep visual semantic embedding model [25] using CNN-LSTM architecture and a
better objective to map the textual and visual content to the same space.

• Annotation of a new dataset RAD of 100 query-video pairs with query relevance annotations for all
the frames and cluster groupings of the frames based on visual similarity. We have also done a detailed
analysis of annotations.

• Generating query dependent video summaries in the form of thumbnails using submodular mixtures
and deep visual semantic embedding model.

1.1 Thesis Organization

The thesis is organized in the following manner. Chapter 3 explains about the MSR dataset that is used to
learn the embedding model. The Query-Image Embedding model and Query agnostic model are explained
in the following two chapters. Later, Chapter 6 describes about the concept of Submodular Maximization.
Chapter 7 tries to explain the various experiments we conducted to choose our final network settings. Chap-
ter 8 deals with how we annotate the new dataset and further describes the analysis on the same. Finally,
Chapters 9 and 10 present the results and conclusions and mention some explorable future works.

6



Chapter 2

Related Work

Conventionally, video thumbnail selection is performed by learning purely from visual content using various
video attributes such as frame quality, attention measurements [12], camera motion [26], object, people
detections [5, 34]. The above methods used the lone visual content of the video bereft of the side semantic
information/metadata like title, tags or descriptions associated with videos. To get the query dependent video
search, search engines initially used only the text information from the website where video was found.
Later, search methods began to use the visual content information: Image retrieval [35, 19]. After receiving
the input query, query relevant images were extracted. Then, the similarity between the searched images
and thumbnail are leveraged to obtain the relevance between query and video thumbnail. For instance, in
[24], photos from Flickr are extracted using the associated keywords of videos and then feature distribution
similarity between the frame and retrieved photo set are computed for the frames interestingness. However,
this is affected by the time consuming image search process [1]. Several learning methods [20, 42] are later
employed to localize tags into videos and this helped in getting query dependent thumbnails according to
the tags.

2.1 Query Relevance

Query dependent image search improved with the multi view embedding methods. [32] proposes a click-
through-based cross view learning method which calculates the distance between an input query and an
image in a latent common subspace giving out the query-image relevance. The deep Visual Semantic Em-
bedding Model [4, 38] learns the semantic relationship between text labels and mapped images in rich
semantic embedding space using deep learning. [39] uses titles of the video to retrieve images and fur-
ther select shots both relevant and representative from learned canonical visual concepts focusing on shared
region between images and given video. [25] uses a deep visual semantic embedding model generated
query-image relevance score to rank the candidate thumbnails keyframes to yield the final video thumbnail.
In order to fill the gap between the image search task and video thumbnail selection, they have also fine-
tuned their trained model to the MSR click-through video dataset for a better thumbnail selection. They
employ a multi-task deep visual semantic embedding model to exploit the query-image relevance from the
click-through based image and video dataset. However, they generate a bias in the selection of candidate
video thumbnail by using the hand crafted video attributes for the keyframe selection. Additionally, the
objective function seems to have a mismatch as they train their model to score a positive query higher than

7
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any random query for an image while in the inference stage, for a query, [25] scores all the frames based on
its relevance to the query. Unlike [25], our objective function learns to score a positive image higher than
any random images for a query which matches well with the inference stage.

We employ a deep visual semantic embedding model providing some improvements over [25] on the
query embedding and the objective function. Firstly, we learn the query-image relevance by joint learning
of two parallel networks- a CNN and a LSTM, to map the image and query respectively to the same latent
semantic embedding space as in Figure 1.3. Unlike [25] which considers the embedding space vector from
a single query word embedded using GloVe, we represent each word of the query using word embedding
model word2vec/GloVe before it is passed sequentially to the LSTM network to yield a fixed length query
embedding. We use the MSR Clickture click-through-based image dataset for training our model. Further-
more, we use the fixed length vector representation of query and uniformly sampled video frames to generate
a rank score for each frame by computing the similarity measures like cosine similarity. This rank score can
determine the selection of top-K frames for the final video thumbnail selection. These top-K frames may not
be diverse visually in nature that results in redundancy in the selection of thumbnails because non-diverse
frames (all frames look similar) would rather be less informative of the video.

2.2 Diversity

Here, the main goal is to select a diverse set of keyframes from a video that are visually distinct and they
are well-representative of the video. There are many approaches in this area of video summarization [6, 8].
Maximal Marginal Relevance (MMR)[2] method which is widely used in NLP domain was adapted to video
by [21], which selects the frames that optimizes for the relevance to the input video and reduces the redun-
dancy within the summary. [8] solves the video summarization as a sub-modular maximization problem over
a set of submodular functions defined separately for image interestingness and representativeness of videos.
There are some recent works such as [46, 36] where they learn an end-to-end model that jointly optimize
for the interestingness and diversity by using determinantal point process (DPPs). We follow [8] to frame
our problem as a video summarization problem with submodular functions defined for query relevance and
diversity.

8



Chapter 3

MSR Dataset

MSR Clickture 1 is a large scale real-world image dataset obtained from the massive amount of click data
from the commercial search engine Bing. Click data provides strong connection between semantics of
queries and images. This dataset is obtained as a triad < K,Q,C > meaning that an image K was clicked
C times in the search results of a query Q. In total, this dataset consists of 40 million unique images and
73.6 million unique queries.

Figure 3.1: t-SNE visualization of 300D vector representation of query words. Zoom in for better reading.

We observe that top query words in the list ordered by frequency are stopwords or certain specific words
such as image, pictures, etc. The incorporation of LSTM in query embedding model as in Figure 1.3 would
have the benefit that it is able to learn the importance of individual words in the query to make a better
representation of a query unlike the conventional method of taking the centroid of all the word vectors of the
query for the query representation. To do a semantic analysis of the text queries, all the query words which

1http://research.microsoft.com/en-us/projects/clickture/
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comprise of 3.65 billion words from 73.6 million unique queries have been mapped into a 300-dimensional
vector space using the word2vec word embedding model. The word2vec [29] takes the full query list as a
text corpus and produces the word vectors as output. It first constructs a vocabulary from the training query
list and then learns the vector representation of words. We use the word2vec model pre-trained on Google
News Dataset and then finetuned for our text corpus 2. We use 300 dimensions for word embedding as used
in [25]. t-SNE dimensionality reduction [27] has been done to visualize them in 2D as shown in Figure 3.1.
In Figure 3.1, we have plotted just 1000 words.

Most Clicked Click Distribution over Images Least Clicked
Query:Elephant

Query:London

Table 3.1: Examples from Clickture dataset. For the query London and Elephant, left most column
represents the most clicked images while the right most column represents the least clicked images. The
central image shows the click distribution over the images for the queries.

In Figure 3.1, we observe that there are many groups of meaningful words formed into clusters of
words, that is, semantically closer words are grouped together. This shows that vector similarity determines

2https://code.google.com/archive/p/word2vec/
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the semantic proximity in the latent semantic embedding space. The embedding of the images in the same
embedding space can bring out the semantic proximity of visual content and text data which helps in finding
the relevance between queries and images, even for queries that are unseen in training.

It is important to explore the distribution of queries and images of the dataset with regards to number
of clicks. This helps to understand how the most and the least clicked images for a query differ in their
characteristics, semantic content, etc. For each query, there are multiple instances of images with different
number of clicks. In table 3.1, we plot the distribution of number of clicks over the images clicked for the
query London. On the left side of the table, we have the images that have the maximum number of clicks
while right side of the table has the minimally clicked images. Maximally clicked images are images that are
aesthetically more favoured by a user than the minimally clicked bottom ones. In the middle, we have the
histogram plot of number of clicks for each image-ID that are clicked for the search of query London. The
distribution of clicks is influenced by the aesthetics of the image, image popularity and the order of search
results. The images that comes in the tail-end are hard negatives which we did not use for the supervised
learning of our model.
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Chapter 4

Query-Image Embedding Model

The structure of our visual semantic embedding model is shown in Figure 1.3. The ultimate aim of our
model is to map the images and queries into the Visual Semantic Embedding Space so that query and image
embedding are semantically comparable in that space. Having the learned model, for a given text query and
a video, we can embed the queries and the video frames into the same space. Then, we can find a set of
query relevant frames depending on the proximity of the frame embeddings to the query embedding. In our
model, we have two parallel networks for the images and queries separately which are jointly trained with
a common loss function. The network is built in an end-to-end fashion for the training and the inference.
During training, we feed the images as input to the CNN part of the network and their corresponding queries
to the query embedding model as shown in Figure 1.3 and learn their projection to the same space.

4.1 Query Representation

For the input textual query, our model employs the word2vec word embedding model which is pre-trained
on a corpus of 73.6M queries, to represent the queries as 300 dimensional dense vectors. We choose the
embedding space to be 300D to make a good compromise between training speed, semantic quality and
appreciative performance [25]. We projected every individual word of the queries into this embedding
space. More than the individual embedding, it is important to get the query word importance and the context
information in the query. Hence, we propose to use a LSTM network which takes a sequence of N words
of the query. The average number of words in the query was around 5. However, we chose N to be 14 and
clipped the words beyond in the query. The choice ofN is a compromise between maximum length of query
and the mean length. Though the maximum length of the query is 23, there are less than 0.1% of queries
that has more than 14 words in them. We use LSTM networks to encode this variable length input query
to yield a fixed dimensional vector which maps the query in the 300D latent semantic embedding space.
The LSTM network can result in a better vector representation for the query for it learns the importance of
each word in the query and their word combinations. We perform the training of the LSTM networks from
random initialization of weights. The LSTM model is as follows:

Q = {f(q1), f(q2), ..., f(qn)}, where n is the #words in the query,

t = LSTMθl
(Q),

13
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where Q is the sequence of word2vec dense vector representation of vectors while qi is an one-hot column
vector at the ith word in a word vocabulary. The function f indicates the word2vec word embedding model
trained on complete set of queries of the MSR dataset. We use pre-trained word2vec model on Google News
Dataset before we finetune it for the queries of MSR dataset. This word embedding model is kept unchanged
during the training. LSTM(Q) with θl represents the LSTM networks that takes in the variable length query
as input and transforms it to yield a fixed length dense vector of 300D. The final representation t for a query
is a function of all the words in the query, aligning more strongly towards the words representing the query
content. The LSTM consists of two hidden layers with 512 units each. All the weights are randomly
initialized and we trained all sets of weights using Adaptive sub-gradient method (adagrad) [19] for updates
with a fixed learning rate.

4.2 Image Representation

For representing images, we leverage the deep convolutional neural network (CNN) architecture of VGG-19
[2] by using their model with the pretrained weights. VGG-19 has 19 layers of which we use the first 18
layers and replaced the softmax prediction layer with a projection layer M . The layer M takes the input
from the fully connected layer fc2 of VGG-19 and output a dense vector representation of image in the same
latent semantic embedding space where queries occupy. Image embedding can be formulated as:

v = Wm(CNNθc(I)) + bm,

where CNN(I) with parameters θc transforms the image to yield 4096 dimensional activation units of
the fully connected layer immediately before the softmax prediction layer. The matrix Wm and bias bm are
parameters of the projection layer M where Wm has dimensions h× 4096, where h is the size of the Latent
Semantic Embedding Space (h = 300). v is the set of 300D output vectors of the input images.

4.3 Objective function

We have the visual semantic embedding model as in Fig 4.1 that maps every image and the query into a set
of vectors in a common 300D latent semantic embedding space. We consider both positive and negative
examples for the training. Positive pairs are set of queries and their corresponding clicked images as pairs
while negative examples are set of queries and randomly selected images whose query has a low cosine
similarity with the query of the positive example. Intuitively, positive examples would have a higher cosine
similarity score h among the query-image pair than the negative example. This can be formulated as:

h(t, v+) > h(t, v−),

where t represents the query embedding vector while v+ and v− are the embedding vectors of image+ and
image− respectively. This requires the positive query-image pair to score higher than negative pairs. Let us
see the loss function for this ranking problem.
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Figure 4.1: Siamese Network. Scoring layer computes cosine similarity between query and frame em-
bedding output vector and the ranking loss enforces the objective of scoring positive pair higher than the
negative one.

4.4 Loss function

The loss function should enforce the objective function by requiring the query embedding with respect to
the positive image to have a higher cosine similarity compared to the embedding w.r.t. to the negative image.
There are many choices for the loss function of ranking problem.

4.4.1 L1, L2 rank loss

Commonly used loss function for the ranking problem is an lp loss, defined as:

lp(t, v+, v−) = max(0, γ − v̂+t̂ + v̂−t̂)p

where p=1,2 are the common choices. The lp loss imposes the ranking constraint to make a positive pair
to score higher than the negative one by a margin of γ. In the case of margin violation, l1 loss applies a
linear loss, while l2 incurs a quadratic loss. In the above equation, t is the unit length normalized vector
representation of the query in Latent Semantic Embedding Space and v+ is unit length normalized output
from CNN part of the network for the input image from the given query-image pairs while v− is the unit
length normalized CNN network output for a random image whose corresponding query has a low cosine
similarity (inner product of unit length vectors) (< 0.5) with the query Q.
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4.4.2 Huber rank loss

MSR Clickture dataset is a compiled online data of triplets of user queries, the clicked images and number
of clicks correspondingly. The noise in this type of data is inevitable. The main drawback of l1 loss is that it
over-penalizes over small margin fluctuations while l2 loss penalizes the outliers heavily due to its quadratic
function [9]. To overcome this, we use the Huber loss formulation [10] to the ranking setting. The Huber
loss is:

lHuber(t, v+, v−) =

{
1
2 l2(t, v+, v−), if u ≤ δ
δl1(t, v+, v−)− 1

2δ
2, otherwise

where u = γ − v+t + v−t, δ decides the point where Huber loss becomes linear. From the equation,
we observe that the Huber loss penalizes quadratically for small margin violations and linear for strong
violations.

We perform the experiments on all three losses and have shown the comparison plots as in Chapter 7.
We infer that the Huber loss performs better than l1 and l2 losses. We set the parameter of margin γ as
1 and δ as 1.5. We explain the choice of these parameters in Chapter 7. Loss function is computed as
the summation over a mini-batch of 128 query-image pairs and it encourages to align the positive query-
image pair in the embedding space and distance apart the negative query-image pair. We use the unit length
normalized output vector representation for the query and image in the loss function because we observe that
the mapping of the queries and images become highly divergent in the case of unnormalized inner product
in the loss function.

4.5 Training Data

MSR Clickture dataset has a huge collection of queries, clicked image URLs and the number of clicks. For
the model training, we extract triplets of {query, image+, image−} where query is a text searched by the
user, image+ is the corresponding image clicked for the query which is clicked by the user, image− is any
random image from the dataset collection whose corresponding query has a cosine similarity less than 0.5
with that of query that the user searched for.

4.6 Validation

For validating the network, we calculate the accuracy of the network as the percentage of number of triplets
query, image+, image− which has a higher cosine similarity score between query image+ pair than the
query image− pair. The expected random performance of any model for this score function is 50%.
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Chapter 5

Query Agnostic Model

In the previous model, the Query Image Embedding model learns the semantic relation between queries and
video frames by embedding them into a common latent semantic embedding space. Query Agnostic (QA)
model tries to rank those frames high which are aesthetically closer to a photograph than a video frame,
which is more likely to be blurry and poorly composed. The assumption is that the images/photographs are
generally well composed compared to video frames. This may be because the videos generally comprise of
moving objects/scenes or they are taken with moving cameras which in turn make the frames blurred and
less composed. This difference between an image and video frame can be leveraged to select a thumbnail
which can be assumed to be more close to an image than a video frame. The QA model will be worthy of
learning generic properties of an image indicating whether it is well-composed, independent of the content.

We add an extra node to the projection layer that learns to provide the query agnostic score for each video
frame. In this formulation, we use the same ranking problem constraints as seen in Chapter 3. However,
we differ in negative examples used for training. In triplets T of {query, image+, image−} as the training
data, query and image+ are query-image pairs from MSR Clickture dataset while 10% of image− are
video frames taken randomly from the collections of videos of the video2GIF video dataset [9]. The ranking
formulation is:

s(image+) > s(image−), ∀(image+, image−) ∈ T,

where s denotes the query agnostic score. The above ranking formulation is combined with the ranking
formulation of query Image embedding model as in Chapter 3. Instead of embedding images to a d dimen-
sional vector, the network is learned to project an image to d + 1 dimensional vector output of which d
dimensions mark the image embedding in the d-dimensional visual semantic vector space and the (d+ 1)st

dimension represents the query agnostic score. The overall loss function is:

lp(t, v+, v−) = max(0, γ − v+t + v−t− v+
d+1 + v−d+1)p,v+

qa ∈ Rd+1,

tqa = [t, 1], t ∈ Rd,
v+
qa = [v+, v+

d+1],v+ ∈ Rd, v+
d+1 ∈ R,

v−qa = [v−, v−d+1],v− ∈ Rd, v−d+1 ∈ R,
lp(tqa,v+

qa,v
−
qa) = max(0, γ − v+

qatqa + v−qatqa)
p,v+

qa ∈ Rd+1,
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where tqa is the query embedding output vector t appended by a constant which we set as 1. v+
d+1

and v−d+1 represents the query agnostic score of the positive and negative sample. We set d as 300. From
the equation, we see that QA model is not influenced by the queries. Hence, it tries to learn the intrinsic
properties of the images such as aesthetics, interestingness [24, 7], etc. to rank the positive image sample
higher than the negative image sample. The lp loss is a general loss function used in the literature for
imposing the ranking constraint to score the positive sample higher than the negative sample [9]. We also
experiment replacing the lp loss with Huber loss [10]. The details of the experiment can be seen in Chapter
7.
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Chapter 6

Submodular Maximization

In the previous chapters, we have seen the extraction of relevant frames to a given text query from a video.
However, it is highly probable that the extracted frames would be visually similar as the consecutive frames
in an uniformly sampled set of video frames are likely to be close enough in visual space. Among the
visually similar (non-diverse) frames, a frame does not give any additional information from other frames.
Hence, a subset selection of frames from a video for a given query should be both query relevant and have a
diverse set of frames which are visually quite distinct. The problem of subset selection of relevant keyframes
avoiding the redundant ones in the context of video summarization, has been solved by different approaches
such as Video-MMR[21], submodular maximization[8], and recently by deep architectures[46].

6.1 Submodularity

In a mathematical perspective [16], submodularity is a property of set functions that fulfill the property of
diminishing returns. Let V is a finite set and S ⊂ V and submodular function f : 2V → R which assigns a
value f(S) for each subset S. In our case, ground set V can be uniformly sampled set of frames of a video
and S be the subset of frames. The key properties of submodular functions are:

• Diminishing Returns: A function f is submodular if for every A ⊂ S ⊂ V and e ∈ V
S. it satisfies:

4(e|A) ≥ 4(e|S)

where4(e|S) is the marginal gain in the value of f by the addition of e, i.e. 4(e|S) := f(S ∪ e)−
f(S).

• Closure: Non-negative linear combinations of submodular functions are also submodular. In other
words, if g1, ..., gn : 2V → R are submodular, and α1, ..., αn ≥ 0, then f(S) = Σn

i=1αigi(S) is
submodular as well [16].

6.2 Submodular Functions

Submodular functions have been used for summarization of documents [23, 22], image collection [15] and
video summarization[8]. Our problem can be treated as a video summarization problems as in [8]. In our
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problem of subset selection of keyframes from a video that are query-relevant and diverse, we have to define
submodular functions separately for relevance and diversity. Later, the weighted linear combinations of
submodular function jointly optimize for the selection of keyframes that are relevant and diverse. Let us
define a video as a set of uniformly sampled frames: V = f1, ..., fn and YV be power set P (V ) from which
we select a optimal subset y∗ ∈ YV .

6.2.1 Relevance

We predict the relevance score of each frame locally without taking into account any of the neighbourhood
frames. This prediction is done by using the visual semantic embedding model as discussed in Chapter 4.
For a given text query, we compute the query relevance score for each frame of the video by inputting the
query and frames to the visual semantic embedding model. We use:

f rel(y) = Σk∈yI(k)

where k is a keyframe in the solution y and I is the relevance score output of the visual semantic embedding
model by the computing cosine similarity between the normalized text and frame embedding. The above
function f rel is a modular function due to its non-dependence on the other selected frames.

6.2.2 Diversity

Here, the function scores how well the selected subset is diverse in nature. We use an objective that favours
a diverse sets of solutions. Ideally, this diverse set should have keyframes that are at the maximum distance
in the visual space from every other keyframe from the same set. We use fc2 features of the fully connected
layer of our CNN model 1.3 to map each frame to the Visual Semantic Embedding Space. We fix the
cardinality of the output set to be k. Further, the objective is to select a set of k frames, such that the sum of
distances between the datapoints in the visual semantic space is maximized, i.e.

fdiv(X, y) =

Σi∈y min
j<i
‖ xi − xj ‖2, if i > 1,

1, otherwise,

where X is the set of fc2 4096-dimensional feature representation of frames in subset y ⊂ V . The func-
tion fdiv is submodular objective function as it is a monotone function following the diminishing returns
property.

6.3 Thumbnail Subset Selection Objective

Using the above submodular objectives, we can now estimate the overall thumbnail subset selection objec-
tive, similar to summarization objective in [8], which jointly optimize to select keyframes that are relevant
and diverse. The objective is a weighted linear combination of the submodular functions defined for rele-
vance and diversity. We are given a video V and a budget B, the cardinality constraint for the set. Let YV
denotes the set of all possible solutions y ⊂ V . The overall objective is:

y∗ = arg max
y∈YV

o(x, y),
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where x are the fc2 features extracted from the video V . We can define the objective as a linear combination
of relevance and diversity submodular objectives:

o(x, y) = w1f
rel(x, y) + w2f

div(x, y),

We keep w1 and w2 to be non-negative and f rel and fdiv are monotone submodular functions [31]. Though
we have the possible number of solutions growing exponentially with the length of the video, we can find
a near optimal solution for the above equation in an efficient way using the submodular maximization [31].
Maximization of submodular functions under cardinality constraints can be solved by greedy algorithms
with lazy evaluations which yields a good approximation of the optimal solution to the optimization of the
above equation[30, 8]. We also learn the weight vector w = [w1, w2] to know the importance of relevance
and diversity in the selection of subset of keyframes. We have training data comprising of query-video
pair and their corresponding subset of keyframes which cater to query relevance and diversity. We use grid
search to learn the weights.
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Chapter 7

Experiments

7.1 Dataset

We use the MSR Clickture dataset in our experiments to learn our model. The complete dataset consists
of 73.6M queries and 40M images. Having a huge dataset, we made a subset consisting of 0.5 million {
query, image+, image− } triplets, where query is a textual phrase, image+ is the image clicked for the
query, image− is any random image from the dataset whose corresponding query has a cosine similarity of
less than 0.5 with query, phrase query. The training and validation data are chosen in the ratio of 10 : 1.

7.2 Data Preprocessing

The images are processed to remove its mean value while word2vec operation are done on the words of
queries to generate 300D dense vector representation for the query words. These are the preprocessing
steps for the preparation of training data.

7.3 Implementation

We experimented with different ways of feeding the query-image inputs to the network. Firstly, we prepared
the training data on-the-fly during the training and fed to the network. Reading the queries and images from
the disk, preprocessing the images to remove its mean value, word2vec operation on queries, etc are done
along with the training process. This consumed a lot of time because of the time-expensive preprocessing
procedure. Secondly, we tried creating hdf5 files for the training data consisting of the preprocessed images
and the dense vector representation of the queries. This significantly improved the training time for each
mini-batch. HDF5 has the advantage that it can store very large datasets and provide fast access. However,
in our scenario we have a model trained on a relatively large dataset that does not fit in memory. Performing
data processing and training in a single process seems a bit less efficient because GPU is idle when hdf5
data is read off the disk and nothing else is done while the GPU is at work. Hence, thirdly, we tried
data processing and training in parallel using python package Fuel. Using Fuel, we ran data processing
server in a separate process different from the process where we ran the training script. We observe that
the Input/Output operations are executed while GPU is busy and thus wasting less time for the data to
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be available. Figure 7.1 depicts the training time for training a mini-batch of size 128 query-image pairs,
observed in all the above three cases in the respective order. We use NVIDIA GeForce GTX Titan X GPU
for our training.

Figure 7.1: Training time for a mini-batch of 128 query-image pairs for the three cases mentioned above.

7.4 Network training

We initialize the CNN with the parameters trained from VGG-19 [37]. We use adagrad weight updates
[3], with mini-batches of 128 query-image pairs, to optimize the model. We use dropout regularization in
the added projection layer while VGG has already dropout in their fully connected layers set to 0.5 [37].
However we keep no dropouts on the LSTM layers [45]. We also use clip gradients at 5 as in [13]. The
learning rate starts from 0.01 and it is decreased after every 30-50 epochs. In the CNN part, we maintain
1000 times lower learning rate for pretrained VGG layers than the final projection layer. We propose to train
the model in three steps. In order to evaluate our model, we compare the following methods on the dataset:

7.5 Baseline

In the baseline framework, we used deep CNN architecture with pre-trained weights from VGG- 19 [37]
with an additional projection layer as shown in Figure 1.3 for the image input. For the input query, we
use a simple word embedding model- word2vec for each word in the query while mean of all word2vec
vector representation of all words in the query is used for the query vector representation. We keep the
word2vec model, which is pretrained on the complete dataset, fixed. In the training process, we train only
the parameters of the projection layer of the CNN part of the network while holding the query representations
fixed. Here, we lock all the top 18 layers of VGG-19 and train only the projection layer on the dataset. The
following figure depicts the experimental results of the baseline:
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Figure 7.2: Training error and testing accuracy plots for the baseline.

We started the baseline training with the learning rate of 0.01 and then decreased to 0.001 after 100
epochs which is clearly seen in the left side image of Figure 7.2. The right side of the image depicts the
testing accuracy of the baseline across the epochs. We decrease the learning rate to 0.001 after 100 epochs
after observing the testing accuracy which becomes stagnant between 60-100 epochs. We note that it resulted
in the increase of the testing accuracy to 60%. This accuracy is not too far from the random performance of
50%.

7.5.1 Loss function Comparison

We compared our baseline with different loss function as mentioned in Chapter 4. Figure 7.3 shows the
comparison plot. We observe that Huber loss achieves better testing accuracy compared to l1 and l2 loss.
The euclidean loss is added to the Huber loss to make a better visualization of 300D query and image
embedding in 2D space using t-SNE visualization and it is rather not helpful for better performances.

(a) Comparison of loss functions. Taken from [9] (b) Testing accuracy plot of different loss functions

Figure 7.3: Loss Functions
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(a) Distribution of difference between normalized
scores of positives and negatives

(b) Comparison of normalized scores of positive and negative
pairs, blue: positives and red: negatives

Figure 7.4: Score Distribution with x-axis representing the Scores and y-axis representing frequency

In Figure 7.4, we have plotted the distribution of query relevance scores for the training samples con-
sisting of positives and negatives. Figure 7.4(b) shows clearly that the positive samples have been learned
to score higher than the negative samples with the mean of positives being greater than 0.5 and the mean of
negatives is less than zero. To be more clear, we also plot the difference between the normalized scores of
positives and negatives as in Figure 7.4(a). We take the same parameters for Huber loss function as in [9].
To analyze the chosen parameter, as in Figure 7.4(a), we plot the distribution of difference between scores
of positives and negatives where X-axis shows the difference in scores and Y-axis: the number of examples.
Since we keep margin as 1 and δ = 1.5, we ensure a Huber loss by the following: linear loss for difference
in score (X-axis) < −0.5, a squared loss for −0.5 < X-axis < 1.0, and no loss for X-axis > 1.0.

7.5.2 Query Agnostic model

Here, we train the baseline with the query agnostic (QA) model. Since the aim of the model is to learn
the aesthetic property of images independent of queries, we used video frames from arbitrary videos as the
negative samples in training. From the evaluation, we note that the network trained with negative video
frames alone learn to identify a snap point [44] from the collection of video frames, however it fails to learn
the semantic relation between queries and images. We give a mixture of images from both MSR dataset and
arbitrary video frames as negative sample to the training. We still observe that QA model did not improve
our results for the selection of query relevant thumbnails as in table 7.1.

7.6 LSTM Training

Here, we incorporate the LSTM network for the query input in addition to the baseline framework. We feed
the variable length sequence of word2vec vector representation of each word of the query to LSTM to yield
a fixed length 300D dense vector in the Latent Semantic Embedding Space. On the other hand, we use the
deep CNN architecture inclusive of the projection layer exactly from the baseline to map the image in the
same embedding space. We keep the CNN part fixed during the LSTM training with the pre-trained weights
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from the baseline while we train the LSTM network using random initializations. As a whole, here we train
the projection layer and LSTM network jointly.

7.7 CNN-LSTM Training

Here, we train the complete model initializing the CNN part of the network from the baseline and the LSTM
part from random initializations. However, the derivatives of the loss function are back propagated through
all fully connected layers of CNN and LSTM for finetuning.

7.8 Evaluation

We test all our methods with all 749 title-video pairs provided by the MSR dataset [25]. We use titles for the
evaluation as queries are not provided with the MSR Evaluation dataset. The usage of titles for evaluation has
some demerits. Titles are generally free-formed, unconstrained and often ambiguous with many numerous
concepts embed into one [39]. Our evaluation is not directly comparable with the evaluations provided in
[25] as they evaluated the models using queries while we evaluate using the titles. Hence, we re-implemented
their method to make a direct comparison. In order to evaluate different methods for query-dependent
thumbnails selection, we compare the following methods:

• Random Here, the method randomly selects one image from the candidate thumbnails as final thumb-
nail, as required by the HIT@1 metric.

• Liu et al[25] Query-dependent thumbnail selection method where the deep visual-semantic embed-
ding model is trained on 0.5M subset from click through based image dataset.

• Ours: l1 Our model trained with l1 loss on 0.5M subset from click through based image dataset. It
differs from [25] in the objective function by using { query, image+, image− } triplets and learning
to score a positive image higher than any random image w.r.t. a query.

• Ours:Huber Our model trained with Huber loss on 0.5M subset from click through based image
dataset.

• Ours:Huber+QA Our model with the query agnostic model, trained with Huber loss on 0.5M subset
from click through based image dataset.

• Ours:Huber+LSTM The deep Visual Semantic Embedding Model is same as the Ours:Huber except
for the use of LSTM query model instead of the average word2vec embedding model for the query.
The model is trained with Huber loss on 0.5M subset from click through based image dataset.

• Ours:Huber+LSTM+QA The above model is trained as query agnostic model with Huber loss on
0.5M subset from click through based image dataset.

• Ours:CNN-LSTM Here, we finetune the CNN on Ours:Huber+LSTM, and trained with Huber loss on
0.5M subset from click through based image dataset.
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We evaluate our methods by the criteria HIT@1 as in [25]. The HIT@1 is computed by the hit ratio for
the highest ranked or first selected thumbnail. They also compute the Mean Average Precision (mAP) over
all the candidate thumbnails by:

mAP =
1
|Q|

|Q|∑
j=1

1
mj

mj∑
k=1

Precision(Rjk),

where Q is the query set, mj is the number of positive thumbnails in each query-video pairs. Precision
is the average precision at the position of returned kth positive thumbnails. The HIT@1 results are shown
in the table. The Labels in the table VG represent Very Good and G represents Good. The thumbnails in the
evaluation set is labelled for a given query by five different scores: VG:Very Good, G: Good, F: fine, B:Bad,
VB:Very Bad.

Method HIT@1: VG HIT@1:VGorG Spearman Correlation mAP
Random 28.2 ± 1.5 57.17 ± 1.5 - -
Liu et al(Baseline)[25] 33.00 59.81 0.112 0.603
Baseline[25]+LSTM 32.03 60.48 0.138 0.607
Ours:L1 32.42 62.61 0.139 0.611
Ours:Huber 32.61 62.21 0.132 0.608
Ours: Huber+QA 31.83 61.81 0.149 0.603
Ours: Huber+LSTM 32.42 63.15 0.178 0.621
Ours: Huber+LSTM+QA 35.93 63.28 0.183 0.619
Ours: CNN-LSTM 37.11 66.22 0.179 0.626

Table 7.1: Comparison of the thumbnail selection methods

For each model in the table 7.1, the numbers of mAP are obtained by averaging the predictions obtained
from the models at each epoch. From the table 7.1, we can infer that the Ours:L1 and Ours:Huber performs
on a par with Liu et al [25]. Liu et al model has been re-implemented to compare with our approach as
they evaluated the models with queries while we evaluate using titles (queries not available). We observe
that query agnostic model does not seem to have learned a better model for thumbnail selection. However,
the addition of LSTM to the baseline model and a better objective with triplets {query, image+, image−}
clearly seem to have a positive effect. The performance on the evaluation dataset has improved by around
4% in HIT@1:VG and 5% in HIT@1:VG or G, compared to the baseline.

• We can infer that the improved objective with triplets {query, image+, image−} provides a improve-
ment of 1.4% on mAP, observing Baseline+ LSTM and Ours : Huber + LSTM .

• We also observe that LSTM boosts the performance in the two following cases: a) Ours : Huber +
LSTM improves by 1.3% over Ours : Huber b) Ours : Huber + LSTM + QA does 1.6%
improvement over Ours : Huber +QA.

We tried different combinations of methods before we finalize our methods for the final evaluation on dif-
ferent datasets. We have tabulated our results on the final model on 3 different dataset in Chapter 9.
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Chapter 8

New Evaluation Dataset: Relevance and
Diversity (RAD)

We propose a new dataset, designed to support the evaluation of relevance and diversity in the selection
of query dependent video thumbnails from videos. The dataset comes with the associated relevance and
diversity assessments performed by human annotators. We crowdsource the annotation task using Amazon
Mechanical Turk (AMT).

8.1 Dataset Description

We create a dataset consisting of 100 text query-video pairs. Given the significant role of selection of text
queries, we take the top searched queries between 2008 and 2016 in YouTube search engine, which is made
publicly available by Google 1. In order to choose a diverse set of videos, we extract the top searched queries
from 22 different video categories: Arts and Entertainment, Autos and Vehicles, Beauty and Fitness, Books
and Literature, Business and Industrial, Computer and Electronics, Finance, Food and Drink, Games, Health,
Hobbies and Garden, Internet and Telecom, Jobs and Education, Law and Government, News, People and
Society, Pets and Animals, Real Estate, Science, Shopping, Sports and Travel. We note that the extracted
queries from each category are certain general terms that are associated with that category. For instance a)
Art and Entertainment - music, remix, full movie and others b) Food and Drink - cake, chocolate, etc. We
observe that the extracted queries are not descriptive in nature. To make the query descriptive and natural,
we use the above queries to search in YouTube again to avail the auto-search suggestions. Subsequently, we
extract the top ten search suggestions for each of the above non-descriptive query for all the categories. We
use search suggestions as the final queries for our dataset which not only become more descriptive in nature
but also emerge to be trending queries of YouTube search engine. Thus, we compiled 100 queries for our
dataset.

For the video selection, we extract the highest ranked video along with its metadata from the retrieved
video results in YouTube search engine. The videos span 2-3 minutes long for each query. We also ensure
that the retrieved videos are under Creative Commons licenses that allow redistribution. For each video, the
retrieved metadata consist of video’s id, title, URL of video from YouTube. Thus, we have 100 query-video

1https://www.google.com/trends/explore
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pairs for our dataset.

8.2 Dataset Annotation

Ground truth annotation of the dataset is dependent on the use case scenario of the annotated dataset. The
proposed dataset is annotated in the view of evaluation of relevance and diversity associated with query
dependent video thumbnails selection from videos. The annotation task is performed by crowd workers at
AMT. We employ a web application 2 to facilitate the process of annotation. The definitions of relevance
and diversity are adopted as:

1. Relevance: A video frame is considered to be relevant for the query if the frame depicts the meaning
of the text query. Bad quality photos such as the one that is severely blurred, out of focus, etc are not
considered relevant.

2. Diversity: A set of selected video frames are diverse if it depicts different visual characteristics of
the query i.e. most of the perceived visual information is different from one frame to another.

In our Human Intelligence Task(HIT) annotation task, there are two subtasks- one for relevance and
the other for diversity. Each HIT task is shown only one query-video pair. Here, the annotator is asked to
perform the relevance task followed by the diversity task. Both the tasks are not time restricted. Figure 8.1
depicts the instruction page provided to workers.

Figure 8.1: Snapshot of Instructions page of Annotation Tool

2https://people.ee.ethz.ch/∼arunv/div rel annotator
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8.2.1 Relevance Annotation Task

Figure 8.2: Snapshot of the Relevance Annotation Tool

In this task, annotators are allowed to annotate the relevance for all the frames one at a time. Relevance is
annotated for all the frames one by one so that the annotator gets a good idea about the video content. This
helps in the following diversity task to group the frames easily. The annotators are shown the frames one
by one and are asked to annotate their relevance with respect to the query as ”Very Good”, ”Good”, ”Not
Good” or ”Trash”, which are the label ratings for query relevance. The annotator is also shown the query
throughout the process. The snapshot of relevance task in our annotation tool is shown in Figure 8.2.

8.2.2 Diversity Annotation Task

Figure 8.3 is the snapshot of diversity annotation task in our web application. Diversity is annotated for
all video frames of a video. The video frames are sampled uniformly from videos at a rate of 1 frame
per sec(fps). Annotators are provided with a thumbnail list of these video frames. The annotators are also
provided with boxes and they are required to group the frames in these boxes/clusters based on the visual
similarity. One box should ideally contain only visually similar frames. All the frames that are annotated
as ”Trash” in the previous task are put in the Group0 automatically. The web application facilitates the
option of selecting the group of video frame thumbnails and drag&drop (select, drag and drop using mouse)
option to cluster it inside the given box. Unlike [11], the annotators are allowed to create arbitrary number
of boxes/clusters. Full size versions of the video frame thumbnail could be seen by clicking on them. The
web application also provides other utilities like resetting the diversity task, undo the last step of drag&drop
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and others.

Figure 8.3: Snapshot of the Diversity Annotation Tool

8.3 Ground Truth Generation

The relevance and diversity ground truth is collected from five different annotators i.e. each HIT task
is performed by five different workers. For every query-video pair in the dataset, we have ground truth
annotations of relevance and diversity task from five different annotators. For certain tasks, we need to
have a single ground truth annotation of relevance score and diversity (cluster number) information. Since
annotations are performed by five different workers and tasks are being subjective, it is likely that annotations
are bound to have some score variations. We combine the annotations of relevance and diversity tasks
separately from five different annotators.

8.3.1 Combine Annotations

In the relevance task, for every query, annotators annotate the relevance scores for all the frames of a video.
The 4 different labels of relevance scores are mapped as follows: a) 3-Very Good b) 2-Good c) 1-Not Good
and 0-Trash. For each frame, we perform majority voting from five annotations to decide one relevance
score. We also tried averaging the relevance scores where we observe the combined relevance score to have
been affected by the outlier annotation of one of the workers. Majority voting seems to be more reliable
than averaging the scores for combining the relevance annotations.
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In the diversity task, it is not intuitive to combine the cluster information(clustering) of five annotations.
An important criteria for comparing clusterings is based on counting the number of pairs of points on which
two clusterings agree/disagree. We plot a similarity matrix KxK ′, whose kk′th element is the number of
clusters in which frames fk and f ′k′ occurs together.

nkk′ =‖ Cij ‖ fk ∈ Cijandfk′ ∈ Cij ,

where i represents the clustering number and j represents the cluster number within the clustering.

(a) Similarity Matrix (b) Hierarchical clustering using dendrograms

Figure 8.4: Similarity matrix based on the diversity annotations on the left and hierarchical clustering to
group the annotations

Figure 8.4 shows the similarity matrix on frames obtained from a particular query-video annotated by
five annotators. The video has 58 frames which forms the X and Y-dimensions for the similarity matrix. Sij
element of the similarity matrix represents the number of clusters in which frames fi and fj occur together.
The matrix is a symmetric matrix and square blue boxes groupings in the matrix represents the clusters.
Matrix should have contained 5 or 0, if the annotations from five annotations are alike. But, we have
variations in the annotations due to its subjective nature. Each annotation has different number of clusters
and hence we take the median of these numbers as the number of clusters in the resultant clustering. We
tried hierarchical clustering, spectral clustering and k-means clustering algorithms (python scikit-learn) to
obtain the resultant clustering with the median number of clusters. Figure 8.4 (right) depicts the hierarchical
clustering performed on similarity matrix data. [41]

8.4 Annotation Statistics

The relevance and diversity ground truth is collected from five different annotators i.e. each HIT task is
performed by five different workers. It is important to measure how much annotators agree themselves
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in their annotations. The agreement between pairs of annotators is to be calculated using statistics that
measure the level of agreement discarding the agreement by chance. Let us analyze the Relevance and
diversity annotations separately.

8.4.1 Correlation:Relevance Task

Relevance Task allows an annotator to label each of video frame as: Very Good, Good, Not good or Trash.
In Figure 8.5, we have plotted the distribution of relevance label annotations over the dataset of 100 videos
in the decreasing order of the length of the video. In the relevance task, we have relevance label annotations
from five annotators. Before plotting the distribution plot, we combine the annotations of 5 annotators to
a single ground truth relevance annotation. We use majority voting to combine from five labels for each
frame of the videos. The distribution of labels over the dataset is VG: 16.73%, G: 61.61%, NG: 13.58% and
Trash:8.08%.

Figure 8.5: Distribution of Relevance score over the dataset

The relevance task labels are mapped to relevance scores as mentioned above. Hence, we have a set
of relevance score as a vector from each annotation. This makes the correlation analysis of the annotations
easier. Spearman’s Rank Correlation is one of the common measure of correlation in statistics. Higher the
value of correlation, the lesser the variations between the annotations which inturn shows higher agreement
between the annotators.
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Figure 8.6: Correlation between half-split(2-3 split) combined annotations

To analyze the relevance score annotations, we plot the distribution of Spearman’s Rank Correlation
stats for each video in the descending order of the mean values. To make a comparison, we analyze the
correlation between the half-split combined annotations, as done by [43]. Each video has five annotations
of which we extract all combinations of half-split of 5 to 2 and 3. For each of these half-split of a particular
video, we combine 2 and 3 annotations correspondingly into a single annotation each by averaging their
labels before we compute the Spearman’s rank correlation. Furthermore, we compute mean and standard
deviation of these correlation values over all possible half-splits of the video annotations. We observe that
the average of correlation score over 100 videos comes out to be ρ = 0.69 compared to ρ = 0.41 observed in
[43] which computes the consistency for labels for a similar task. This ρ = 0.69 shows that our annotations
are of high quality. However, we observe low scores of correlation for the following videos:

• Videos created from a few set of images such as lyrics of music videos.

• Videos with minute visual changes and captured from a stationary camera.

The above cases are ambiguous for the workers to annotate. Hence, the correlation scores are low. We
plan to remove such videos such as lyrics videos in the later annotation of the dataset.

8.4.2 Normalized Mutual Information:Diversity Task

In figure 8.7, we see the number of clusters in each video as annotated by AMT annotators. The green, blue
and red plots correspond to the maximum, mean and minimum number of clusters respectively in each video
annotation. To analyze and combine these five clusterings of each video, we have various metrics used in
the literature such as Variation of Information, Normalized Mutual Information and among others. [41]
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Figure 8.7: Distribution of number of clusters over the dataset

Variation of Information(VI) is a metric which measures the amount of information lost and gained in
changing from clustering C to clustering C ′[28]. This metric can be used to find the VI metric between all
the pairs of annotated clusterings. The VI metric is:

V I(C,C ′) = H(C) +H(C ′)− 2 ∗ I(C,C ′),

H(C) = −ΣK
k=1P (k)log(P (k)),

I(C,C ′) = ΣK
k=1ΣK′

k′=1P (k, k′)log(
P (k, k′)
P (k)P (k′)

),

P (k, k′) =
‖ Ck ∩ C ′k′ ‖

n
,

P (k) =
nk
n
,

where P (k), k = 1, ...,K and P (k′), k′ = 1, ...,K ′ are the random variables associated with the clusterings
C, C ′. P (k) is the probability of a frame to be picked from cluster Ck. n(k) is the number of frames in
cluster Ck while n is the total number of frames. Let P (k, k′) represent the probability that a frame belongs
to Ck in clustering C and Ck′ in C ′ which is the joint distribution of the random variable associated with the
two clusterings.

V I is calculated using H(C) and I(C,C ′). H(C) is entropy associated with cluster C which is the
uncertainty of a frame to be in which cluster is it going to be in. I(C,C ′), mutual information between
two clusterings C,C ′ is the information that one clustering has about the other. Intuitively, suppose we have
a random frame from video V . The uncertainty about its cluster in C ′ is measured by H(C ′). Suppose
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it is known about the cluster the frame belong to in clustering C. Then, how much does this knowledge
reduce the certainty about C ′? This reduction in uncertainty averaged over all the frames is I(C,C ′)[28].
Having the entropies of C and C ′ and the mutual information between the clusterings, we get the V I metric
comparison the two clusterings. If the two clusterings are identical, we have V I = 0. As the value of
V I grows, the information shared between the clusterings decreases. The main properties of V I are: a)
Symmetric b) Follows Triangle inequality. As a consequence of these properties, with this metric, we can
move from comparing two clusterings to analyzing large sets of clusterings[28].

Figure 8.8: VI metric(distance) graph. Nodes represents the clusterings and edges represents the distance
between them. This graph is computed on a video from RAD dataset.

Figure 8.8 is plotted by computing the V I metric between all pairs of clusterings obtained from the
diversity annotation task of five annotators. The closer the nodes in the graph, the more is the agreement
between the annotators.

Variation of Information has good properties to be a metric for comparing two clusterings and can
compare the consistency of labellings for a video with the unnormalized values of VI to be identical (VI
= 0) or random (VI = large number). However, the normalization of VI is important to get the distances
comparable across videos. In the literature, VI has an upper bound V I(C,C ′) ≤ 2∗ log(K); whereK is the
maximal number of clusters of any dataset in the experiment. In our dataset with videos of different lengths,
the true K is ambiguous as we do not have a clear maximum number for the number of clusters over all
videos. To make the range of VI to be [0,1] for every video, we have to use K as the total number of video
frames in that video but this makes VI metric to be depended on the length of video.

For the above limitations of VI, we use Normalized Mutual Information(NMI) metric, a comparable
metric to VI using the measures of mutual information and entropy. It satisfies the properties: 1. Range of
NMI is [0, 1] where pair of clusterings reaches 1 if identical while the value 0 if the pair of clusterings is
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independent; 2. The metric is independent of number of clusters in the clusterings and number of elements in
the clusters; 3. Same properties of VI such as Symmetric, triangle inequality. NMI between two clusterings
is defined as:

V I(C,C ′)
H(C) +H(C ′)

= 1− 2 ∗ I(C,C ′)
H(C) +H(C ′)

,

NMI(C,C ′) =
2 ∗ I(C,C ′)

H(C) +H(C ′)
,

0 ≤ NMI(C,C ′) ≤ 1.

In the above equation, we shall clearly see the relation between V I and NMI . NMI(C,C ′) = 1 for
C = C ′ and NMI(C,C ′) = 0 if P (i, j) = 0 or P (i, j) = P (i).P (j) (from the definition of mutual
information). The denominator of NMI becomes zero if the both clusterings are trivial. In the annotation
of our dataset, trivial clusterings are clusterings where annotators have annotated all frames of any particular
video to a single cluster. We have removed that particular annotation of a worker if the clustering is trivial
and a new HIT was reuploaded for that video. In the case where all the annotated clusterings are trivial, we
remove the video and its corresponding annotations from the final dataset.

Figure 8.9: Mean and standard deviation of Normalized Mutual Information

Figure 8.9 depicts the mean and the standard deviation of NMI between the annotators for each video,
plotted in the decreasing order of the mean. The above plot has been plotted for 100 videos of our dataset.
We note that the average of all the NMI values over all the videos is 0.541.

38



CHAPTER 8. NEW EVALUATION DATASET: RELEVANCE AND DIVERSITY (RAD)

8.5 Quality Control Procedure

We have conducted more than 600 HITs in AMT comprising of 120 different videos with each having five
assignments. Initially, we reviewed annotations manually for the first 200 HITs and we gave qualification
for the workers if their annotations were unambiguous. In total, 48 unique workers got qualified from these
200 HITs among 55 workers who participated. So far, we have collected the annotations for 120 videos of
which we have removed 12 videos due to its bad quality or being a static video. For annotation of rest of the
dataset, we plan to get annotated from these qualified workers to make it more trustworthy.

Figure 8.10 is the snapshot of the visualization page we use to review the annotations. In figure 8.10,
left side shows the groups that contain the visually similar frames that the annotator annotated. The first row
is the trash which contains the trash frames while the following rows have each row representing a group.
We have a slider on top to check the relevance annotation label of each frame individually.

Figure 8.10: Snapshot of the Review Annotation page

We use the above review annotation page to review the first 200 HITs from which we have qualified
48 workers for further annotations. Since we allow only the qualified workers to annotate the dataset, we
observe that the annotations become more reliable. For later annotations, we automate the acceptance of the
HITs with few random manual checks.

The analysis of relevance and diversity annotations help to remove some particular poor annotations or
a complete video with all the annotations in certain cases. The correlation analysis of relevance annotations
helps to compare the annotators agreement for the videos. We observe low correlation scores(poor annotator
agreement) for certain type of videos such as lyrics music videos, video captured from stationary cameras,
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etc which we subsequently remove from the dataset. The analysis of clusterings using Normalized mutual
information also helps in identifying trivial clusterings among the annotations. Trivial clustering can be
identified when NMI become undefined for any particular clustering. We remove such annotations (trivial
clusterings) from the dataset and re-upload the HIT till we get five annotations for a video. We see that
NMI and correlation analysis played a major role in the removal of certain annotations or a complete video
from the final dataset.

Thus, we use the correlation and clustering analysis to check and maintain the quality of our dataset
annotations.
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Chapter 9

Results and Discussion

Query: Justin Bieber behind the scenes

Query: Chris brown-turn up the music

Query: Rainy september ride in a Rhino 700

Query: The best surprise military homecomings

Query: Wagon go kart

Query: Amber Heard returns to movie set and pregnancy rumours

Figure 9.1: Examples of selected thumbnails for different queries (better viewed in colour). The
groundtruth label is provided at the top right. Unnormalized score from our method is put at bottom right.
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9.1 Relevance

Figure 9.1 shows some selected thumbnails for different queries-video pairs to visualize the results. The
figure has ground truth labels at its top right corner and unnormalized score of our method at its bottom right
corner. The scores are not normalized in the figure to allow us to visualize the query-thumbnail relevance
over the queries. We have ranked thumbnails in the decreasing order of their scores. In the first four rows of
examples, we clearly see that the thumbnails produced are semantically relevant to the corresponding query.
We see that the thumbnail highly ranked for ”Justin Bieber” is his image itself, for ”Rhinos”- images of a
tractor in fields and for ”military” - soldiers with their family. Furthermore, we provide two failure examples
in the last rows of Figure 9.1.

9.2 Diversity

In Figure 9.1, we also note that the thumbnails selected for some queries appear similar visually. In the
second example of the figure, we see that the highly ranked thumbnails are quite similar. Hence, we use the
submodular formulation as explained in Chapter 5 to obtain the diverse set of query relevant thumbnails.
We have kept the weight vector as w = [1, 1] i.e. giving equal importance to relevance and diversity for the
subset selection. Later, we show the results after learning the weights which maximizes the summarization
objective.

a) Relevant frames without Diversification

b) Relevant frames with Diversification

Figure 9.2: Thumbnails with & without Diversification For query:Anaconda Snake, above video thumb-
nails are obtained. The first row contain the relevant frames from the Visual Semantic Embedding Model
while the second row represents the diverse set of query relevant frames obtained with w = [1, 1].

In Figure 9.2, we observe that query relevant frames from the Visual Semantic Embedding Model appear
relevant to the query ”Anaconda Snake” but three out of five selected thumbnails look visually similar.
However, in the second row, we have more diverse set of relevant frames selected. In this diversification,
we see that some less relevant frames have also been ranked high, for eg, the fifth thumbnail in the second
row. We predict that this may be due to the weight vector w which gives equal importance to relevance
and diversity. Later, we learn the weight vector that decide the importance to be given to both relevance and
diversity. This is learned using ground truth annotations obtained from the newly annotated Evaluation RAD
dataset. In the subsequent sections, we present the results of relevance scores on three different dataset. We
also present some visualization results of relevance and diversity on the new dataset: RAD.
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(a) Set of Relevant datapoints (b) Set of Diversified Relevant datapoints

Figure 9.3: t-SNE visualization of subset selection. Red labelled as the selected points

Figure 9.3 shows t-SNE representation of fc2 features extracted from all frames of a video. The selected
thumbnails are marked in red. We see a clear distinction in the diversification of the selection of thumbnails
from Figure 9.3(a) and 9.3(b).

9.3 Performance Evaluation

9.3.1 MSR Dataset

Figure 9.4 depicts the Precision-Recall curve for different methods evaluated on MSR Evaluation dataset.
We have already seen a lot about the MSR dataset and the methods in the previous sections. The curves in
the figure clearly shows the improvement over the baseline [25].

Figure 9.4: Precision-Recall curve of MSR Evaluation dataset for different methods
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The following table 9.1 shows the comparison of over different methods over different metrics. We see
that our method made an improvement of 2.6% over the baseline w.r.t mAP. We see that LSTM boosts the
performance in the two cases: Ours : Huber + LSTM improves by 1.3% over Ours : Huber while
Ours : Huber + LSTM +QA does 1.6% improvement over Ours : Huber +QA. However, observing
Baseline + LSTM and Ours : Huber + LSTM , we can infer that the improved objective with triplets
{query, image+, image−} provides a improvement of 1.4% on mAP. Thus, our better aligned objective
function and LSTM network for query modelling played a significant role in improving the performance.
We observe that query agnostic(QA) score does not improve mAP over the model without QA.

Method HIT@1: VG HIT@1:VGorG Spearman Correlation mAP
Random 28.2 ± 1.5 57.17 ± 1.5 - -
Liu et al(Baseline)[25] 33.00 59.81 0.112 0.603
Baseline[25]+LSTM 32.03 60.48 0.138 0.607
Ours:L1 32.42 62.61 0.139 0.611
Ours:Huber 32.61 62.21 0.132 0.608
Ours: Huber+QA 31.83 61.81 0.149 0.603
Ours: Huber+LSTM 32.42 63.15 0.178 0.621
Ours: Huber+LSTM+QA 35.93 63.28 0.183 0.619
Ours: CNN-LSTM 37.11 66.22 0.179 0.626

Table 9.1: Comparison of the different thumbnail selection methods on MSR Evaluation dataset

9.3.2 MediaEval Dataset

Figure 9.5: Precision-Recall curve of MediaEval dataset for different methods
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This dataset is provided in the MediaEval 2016 challenge on Predicting Media Interestingness Task. The
dataset consists of 52 movie trailers of Hollywood-like movies and their movie titles. The data consists of
collections of keyframes extracted from the video shots which are obtained after the manual segmentation of
the trailers. The extracted keyframes correspond to the frame in the middle of each video shot. This helped
in comparison of results in image and video interestingness [9] as in figure 9.5.

Figure 9.5 depicts the Precision-Recall curve of different methods evaluated on MediaEval dataset. As
in 9.2, our method made an improvement of 2.73% over the baseline. We also observe that [9] leads in
HIT@1 metric. This may be due to the advantage of additional information for [9] as the input being a
video shot than a video frame. However, Ours : Huber + LSTM made an improvement of 1.25% over
[9] in mAP and an improvement of 0.05 over baseline in Spearman’s Rank Correlation. We use titles of the
videos which are the movie titles. They are generally less related to video content. Titles provide limited
help for our model to make a query relevant thumbnail selection. However, our model performs as compared
to [9] in mAP and shows a improvement of 2.73% over [25].

Method HIT@1: VG Spearman Correlation mAP
Random 10.48 ± 4.4 - -
Liu et al(Baseline)[25] 15.38 0.0217 0.1623
Video2GIF[9] 25.0 0.0672 0.1893
Ours: Huber+LSTM 21.15 0.0671 0.1896
Ours: Huber+LSTM+QA 19.23 0.0602 0.1811
Ours: CNN-LSTM 17.03 0.0715 0.1863

Table 9.2: Comparison of the thumbnail selection methods on MediaEval dataset

9.3.3 New Evaluation Dataset: RAD

Figure 9.6: Precision-Recall curve of New Evaluation dataset for different methods
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Figure 9.6 depicts the Precision-Recall curve for different methods on the newly annotated RAD dataset.
Our method made an improvement of 3.9% over baseline w.r.t mAP and 0.084 w.r.t Spearman’s Rank
Correlation. Here, we evaluated for [9] by extracting a video segment around the annotated frames of RAD
dataset. We note that [9] is competitive in the overall with a high Spearman’s Rank Correlation but performs
low in HIT@1 results.

Method HIT@1: VG HIT@1: VG or G Spearman Correlation mAP
Random 28.06 ± 4.5 77.05 ± 3.5 - 0.773
Liu et al(Baseline)[25] 28.12 79.61 0.112 0.80
Video2GIF[9] 28.98 74.76 0.197 0.806
Ours: Huber+LSTM 29.68 82.52 0.190 0.810
Ours: Huber+LSTM+QA 31.25 80.58 0.189 0.804
Ours: CNN-LSTM 35.93 82.52 0.196 0.812

Table 9.3: RAD dataset: Comparison of the thumbnail selection methods using queries

9.4 Submodular Shells

As explained in Chapter of Submodular Maximization, we use the summarization objective as a weighted
linear combinations of submodular functions defined for relevance and diversity. We introduce these two
submodular functions to produce diversified query relevant thumbnail selection results. To find the weights
for each of the above submodular functions, we execute the grid search over the weights. Keeping the
weight of relevance shell as a constant 1, we search for the weight of the diversity shell that maximizes the
summarization objective.

Figure 9.7: Grid Search for finding the weights of sub-modular shells

Figure 9.7 shows that the summarization objective gets maximized at the weight of 2. Hence, we use
the the weight vector of {f rel,fdiv}=[1, 2]. Figure 9.8 shows the qualitative results for the query relevant
keyframes extracted with and without diversification.
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Figure 9.8: Query relevant and diversified results using our model on newly annotated RAD dataset
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In Figure 9.8, for every query, the first rows represent diversified query relevant frames obtained using
the weight vector [1, 2] while the second rows represent query relevant frames without diversification using
the weight vector [1, 0] and the third rows represent uniformly sampled elements from the video. These
keyframes are arranged in the decreasing order of the summarization objective. In figure 9.8, the frames
correspond to the videos of the newly annotated dataset. For the queries 1 and 3, we can clearly observe
that the first row set of keyframes not only extract relevant frames but they are diverse in nature too while
the second row set of keyframes seems to be visually similar. For example, we see that all 5 images in the
second row of the query 1 and last 2 images of second row in query 3 are visually similar. For the query 4,
we observe that the results without diversification appear better as the video may be diverse in itself.

Some additional qualitative results on diversified query relevant thumbnail selection results are in Ap-
pendix A.
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Chapter 10

Conclusion and Future Work

In this thesis work, given a query and a video, we propose a model based on deep networks and submodular
mixtures to make a subset selection of diversified query relevant thumbnails from the video. The model
comprises of a deep Visual Semantic Embedding Model that projects the query and all video frames into
the Latent Semantic Embedding Space. Based on query and frame embeddings, we rank all video frames
depending on their embeddings’ proximity to the query embedding. Further, the model uses submodular
objectives defined for query relevance and thumbnail diversity which is maximized for the overall thumbnail
subset selection objective. This is jointly optimized to select frames that are both query relevant and diverse
and thus yielding a query relevant video summary in the form of keyframes. Based on our results of our
model, let us see some of the conclusions of my thesis:

Deep visual semantic embedding model. We use a supervised approach to learn LSTM networks to
embed the text query and CNN networks to embed frames into the same Latent Semantic Embedding Space
by joint training. The improvements on Deep visual semantic embedding model [25] using CNN-LSTM
architecture and a better objective with training triplets {query, image+, image−} significantly improved
our results on the extraction of query relevant thumbnails. We also observe that a query agnostic model
which learns to score well-composed frames (photograph like) high, did not give a significant boost to our
model performance. However, comparing our method against previous state of the art methods, we see that
our model outperforms them significantly on relevance prediction.

RAD Dataset. For the evaluation of query relevant video summarization, there is a shortage on the
availability of a dataset. MSR Evaluation dataset [25] is a close match to the problem but it lacks the queries
and more importantly, ground truth thumbnails provided in the dataset are not diversified (not representative
of video). Hence, we introduce a new dataset (RAD) comprising of 100 query-video pairs with query
relevance annotations for all the frames and cluster groupings of the frames based on visual similarity. This
dataset caters to the evaluation of selection of diversified set of query relevant thumbnails for videos. The
detailed analysis of relevance and diversity annotations help to remove some particular poor annotations or
a complete video with all the annotations in certain cases. The correlation analysis of relevance annotations
helps to compare the annotators agreement for the videos. The analysis of clusterings using Normalized
mutual information helps in identifying trivial clusterings among the annotations. Identification of trivial
clusterings and correlation agreement among annotators being poor are some of the criteria that we use to
remove the video annotations from the dataset. In the final dataset, the relevance and diversity annotations of
our dataset are of high quality and consistent as we observe a high level of agreement between the annotators
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with an average correlation score of 0.69. We introduce this dataset to evaluate on the query relevant video
summaries in the form of keyframes.

Query Relevant Video Summarization. Our problem of query relevant thumbnail extraction can be
seen as query relevant video summarization. We adopt the technique of summarization using submodular
mixtures from [8]. We define two separate submodular shells: a) Relevance shell which uses the deep Visual
Semantic Embedding Model to score each frames depending on its text query relevance, b) Diversity shell
tries to maximize the distance between the image embedding in Visual Semantic Space for which we use fc2
representation from our CNN architecture. Having learned the weights for these shells using grid search, we
observe that weights of {Relevance, Diversity}=[1, 2] maximize the overall summarization objective. Thus,
we generate query dependent video summaries in the form of thumbnails using the submodular mixtures
and deep visual semantic embedding model. In the qualitative results, we can see clearly that diversified
summaries bring out a diverse set of thumbnails that are also query relevant.

Future Work. Text query relevant video summarization is still an emerging problem [39]. There are
a good number of less explored problems in this direction such as visual question answering from videos,
query adaptive GIF creation and among others. Another interesting improvisation can be in the model
architecture. Till date, there are no available end-to-end deep inference networks to our knowledge that solve
this problem of query relevant video summarization. Though there are deep networks that tackle relevance,
simultaneous relevance scoring and diversification of the solution set still seems to be a challenging problem
for a deep network in end-to-end fashion.
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Appendix A

Supplementary Results
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APPENDIX A. SUPPLEMENTARY RESULTS

Figure A.1: Diversified Query Relevant Results. Unnormalized score from our method is put at bottom right
corner (better viewed in colour)
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